法律声明

严禁将本文用于任何形式的学术不端行为,包括但不限于考试作弊、作业代写、论文抄袭等。读者应遵守学术诚信政策及适用法律法规。

Monotonicity

Let f(x)f(x) be differentiable on an interval II:

  • If f(x)0f'(x) \geq 0 for all xIx \in I, then ff is increasing on II.
  • If f(x)0f'(x) \leq 0 for all xIx \in I, then ff is decreasing on II.
  • If f(x)>0f'(x) > 0 for all xIx \in I, then ff is strictly increasing on II.
  • If f(x)<0f'(x) < 0 for all xIx \in I, then ff is strictly decreasing on II.

Open and Closed Intervals

  • An open interval does not include any endpoint, and is indicated with parentheses: (a,b)(a, b).
  • A closed interval includes all its endpoints and is denoted with square brackets: [a,b][a, b].

© 2025 MikeWu597 使用 Stellar 创建

琼ICP备2023004663号-3
湘公网安备 43010302001556号